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Abstract. In this paper, the problem of global practical output tracking is
investigated by state feedback for a class of uncertain nonlinear time-delay
systems. Under mild conditions on the system nonlinearities involving time
delay, we construct a homogeneous state feedback controller with an
adjustable scaling gain. By a homogeneous Lyapunov-Krasovskii
functional, the scaling gain is adjusted to dominate the time-delay
nonlinearities bounded by homogeneous growth conditions and render the
tracking error can be made arbitrarily small while all the states of the
closed-loop system remain to be bounded.

1 Introduction
Consider the following uncertain nonlinear time-delay system

1

1

1 2 1

1 1

1

( ) ( ) ( , ( ), ( ), ( )),

( ) ( ) ( , ( ), ( ), ( )),
( ) ( , ( ), ( ), ( )),
( ) ( ),


 

  

  

  









n

p

p
n n n

n n

x t x t t x t x t d u t

x t x t t x t x t d u t
x t u t x t x t d u t
y t x t






(1)

where T
1( ) ( ( ), , )): (  n

nx t x t x t R , u R , and ( )y t R are the system state, control input
and output, respectively. The constant 0d is a given time-delay of the system,
for 1,i …, ,n and the system initial condition is 0( ) ( ), [0, ] . x d    The terms ( )i
represent nonlinear perturbations that are unknown continuous functions and

1 : { [0, ) :   i oddp R p q p and q are odd integers, p q } ( 1, , 1) i n are said to be
the high orders of the system.

Global practical output tracking problem of nonlinear systems is one of the most
important and challenging problems in the field of nonlinear control and has received a
great deal of attention. By posed some conditions on system growth and power order, the
practical output tracking problem of system (1) has been well-studied and a number of
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interesting results have been achieved over the past years, see [1-8], as well as the
references therein.

However, the aforementioned results have not considered the time-delay effect. It is
well known that time-delay phenomena exist in many practical systems such as electrical
networks, microwave oscillator, and hydraulic systems, etc., due to the presence of time
delay in systems, it often significant effect on system performance. Therefore, the study the
problem of output tracking and stabilization of time-delay nonlinear systems has important
practical significance and has received much attention in recent years. In recent years, by
employing the Lyapunov-Krasovskii method to deal with the time-delay, control theory,
and techniques for stabilization problem of time-delay nonlinear systems were greatly
developed and advanced methods have been made; see, for instance, [9 -13] and reference
therein. Compared with study the stabilization problem contain time-delay, the theory of
output tracking control developed slower. In the case when the nonlinearities contain time-
delay, for the output tracking problems, some interesting results have been obtained [14-16].
However, in [14 -16] only considered special case for the system (1), i.e., 1ip case. When
the system under consideration is inherently time-delay non-linear, the problem becomes
more complicated and difficult to solve. To the best of our knowlege, many interesting
output tracking control problems for time delay inherently nonlinear systems unsolved yet.
In this paper, we deal with such as the tracking problems via state feedback domination
method in [17,18].

2 Mathematical preliminaries
We collect the definition of homogeneous function and several useful lemmas.

Definition1 ([19]). For a set of coordinates  1, ,  n
nx x x R and an -tuple

1( , , )  nr r r of positive real numbers we introduce the following definitions.
(i) A dilation ( )s x is a mapping defined by

 1
1( ) , , ,   nrrr

s nx s x s x 1( , , ) ,   n
nx x x R 0 s , where ir are called the weights

of the coordinate. For simplicity of notation, the dilation weight is denoted
by 1( , , )   nr r .

(ii) A function ( , ) nV C R R is said to be homogeneous of degree if there is a real

number  R , such that  1( ( )) ( , , ), 0    r n
s nV x s V x x x R .

(iii) A vector field ( , ) n nf C R R is said to be homogeneous of degree  if the

component if is homogeneous of degree  ir for each i, that

is, 1( ( )) ( , , ),  irr
i s i nf x s f x x ,  nx R 0, s for 1, , i n .

(iv) A homogeneous p -norm is defined as
1

, 1 , , 1 
     
 
 i

pp rn n
ip ix x x pR .

For the simplicity, write x for ,2x .

Next, we introduce several technical lemmas which will play an important role and be
frequently used in the later control design.

Lemma1[19]. Denote 1( , , )nr r   as dilation weight, and suppose 1( )V x and 2 ( )V x
are homogeneous functions with degree 1 and 2 , respectively. Then, 1 2( ) ( )V x V x is also
homogeneous function with degree of 1 2  with respect to the same dilation Δ.
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definite, there is a constant 0  such that ( )x V x   .
Lemma3[17]. For all ,x y R and a constant 1p  the following inequalities hold:

(i) 12p p p px y x y   ,  1 1 1p p px y x y      112
pp p x y 

If 1
oddp R , then

(II) 12p p p px y x y   and   111 1 2 .pp pp px y x y  

Lemma4[18]. Let ,c d be positive constants. Then, for any real-valued
function ( , ) 0x y  , the following inequality holds:

( , ) ( , )c d c d c dc dc dx y x y x x y y
c d c d

   
 

.

This paper deals with the practical output tracking problem by state feedback for time-
delay high-order nonlinear systems (1). Here, we give a precise definition of the problem.

The problem of global practical tracking by a state feedback: Consider system (1) and
assume that the reference signal ( )ry t is a time-varying 1C -bounded function on [0, ). For
any given 0  , design a state feedback controller having the following structure

( ) ( ( ), ( )), ru t g x t y t (2)

such that

(i) All the state of the closed-loop system (1) with state controller (2) is well-defined
and globally bounded on[0, ) .

(ii) For any initial condition, there is a finite time 0T , such that

( ) ( ) , 0    ry t y t t T . (3)

In order to solve the global practical output tracking problem, we made the following
two assumptions:

Assumption1. There are constants 1 2,C C and 0 such that
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(4)

where 1 11, 0, 1, ,     i i ir r p r i n and 1np .
Assumption2. The reference signal ( )ry t is continuously differentiable. Moreover,

there is a known constant 0D , such that

( ) ( ) , [0, )r ry t y t D t     (5)

3 State feedback tracking control design
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In this paper, we deals with the practical output tracking problem by delay-independent
state feedback for high-order time-delay nonlinear systems (1) under Assumptions 1-2. To
this end, we first introduce the following coordinate transformation:

1 1 1: , : , 2, , , :


    
i n

i
r i

x uz x y z i n v
L L  (6)

where 1 1 10, ( 1)i i ip       , 2, ,i n  and 1L  is a scaling gain to be determined
later. Then, the system (1) can be described in the new coordinates iz as

1

1

( , ( ), ( ), ), 1, , 1,
( , ( ), ( ), ),

    

  


 


ip
i ii

n n

z Lz t z t z t d v i n
z Lv t z t z t d v
y z


 (7)

where

1 1( , ( ), ( ), ) ( , ( ), ( ), ) ,

( , ( ), ( ), ) ( , ( ), ( ), ) , 2, , .

   

   



i

r

i i

t z t z t d v t z t z t d v y

t z t z t d v t z t z t d v L i n

 

 
(8)

Now, using Assumption 1, Lemma 3, the fact that 1L  and the boundedness of ry and
ry guaranteed by Assumption 2, ensures the existence of constants iC , 1, 2i only
depending on constants 1 2, ,C C , andi L  , under which (4) becomes

 
  

1 1 1 1( ) ( )
1 1 1 1 2

( ) ( )1 2
1

1

( , ( ), ( ), ) ( ) ( )

( , ( ), ( ), ) ( ) , 2, ,

 

 



    

      i j i ji
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r r r r

i r r r rv
i j j
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t z t z t d v C z t z t d C

Ct z t z t d v C L z t z t d i n
L

 

 






(9)

where 1 20, 0 C C and  min 1 ( ) , 2 , 0: 1i j i j ir r j i i n            are some
constants.

In what follows, we will employ the homogeneous domination approach to construct a
global state feedback controller for system (7).

2.1 Stability Analysis

First, we construct a homogeneous state feedback controller for the nominal nonlinear
system without considering the non-linearity of ( )i , 1, , 1 i n in (7), i.e.,

11, 1, , 1, ,     ip
i niz Lz i n z Lv y z (10)

Using SIMILAR the approach in [11, 17-18], we can design a homogeneous state
feedback stabilizer for (8), which can be described in the following Theorem1.

Theorem1. For a real given number 0 , there is a homogeneous state feedback
controller of degree  such that the nonlinear systems (10) is globally asymptotically stable.

Proof. To prove the result, we use an inductive argument (recursive design method) to
explicitly construct a homogeneous stabilizer for system (10).

Initial step1. Let 1 1
1 1 1

r rz z    , where 1 0z  and  1max 1,i n ir    is a
positive number. Choose the Lyapunov function

  11 11

1

2

1 1 1

rz rr
z

V W s z ds
  




 
   . (11)

From (10), it follows that
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r p pV nL L z z          (12)

where 2z
 the virtual controller and it is chosen as

 1 1 2 21 2 11 ( )
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Step ( 2, , ) k k n . Suppose at the step k-1, there is a 1C , positive definite and proper
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with 0, 1 1i i k     being constants, such that

   1 1 1
1
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( 2) k k k

k
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      . (15)

We claim that (15) also holds at Step k, i.e., there is a 1C , proper, positive definite
Lyapunov function defined by

  
*

2
*

1 1( ) ( ) ( ), ( )
 

    
kk kk

k

rz rr
k k k k k k k k kz
V z V z W z W z s z ds

  
 (16)

and virtual controller 1 1
1

k kr r
k k kz    
   such that

   22
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1
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k
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      . (17)

Since the prove of the claim (17) is very similar [4-5, 14], so omitted here.
Using the inductive argument above, we can conclude that at the -th step, there exists a
state feedback controller of the form

1

1 1

1

n
in n

rn
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n n i i
i
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with the 1C , proper and positive definite Lyapunov function,
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   (19)

we arrive at
2

1
,

n

n j
j

V L 


   (20)

where i ir r
i i iz z    and , 1, ,i n i i n     are positive constants. Thus, the

closed-loop system (10) and (18) is globally asymptotically stable.

2.2 Tracking control design for the time-delay nonlinear system (1)

Now, we are ready to use the homogeneous domination approach to design a global
tracking controller for the system (1), i.e., state the following main result in this paper.
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Theorem 2. For the time-delay nonlinear system (1) under Assumptions 1-2, the global
practical output tracking problem is solvable by the state feedback controller 1 nu L v in

(7) and (18)

Proof. From (18), we have
1

1 1

1
.



 



 
    

 


n

in n

rn
rr r

n n i i
i

v z


    (21)

Now, we define the compact notations

 1, , ,  T
nz z z  1 1

2( ) , , ,  n
Tp p

nE z z z v and  2
1 2( ) , , ,  n

T
nF z L L   . (22)

Using the same notation (7) and (22), the closed-loop system (7) - (18) can be written as
the following compact form:

( ) ( )z LE z F z  (23)
Moreover, by introducing the dilation weight 1( , , )nr r   , from Definition 1, it can

be shown that nV is homogeneous of degree 2 − with respect to  .
Hence, adopting the same Lyapunov function (19) and by Lemm2 and Lemma 3, it can be
concluded that

2
1 1( ) ( ) . ( )  

  
    

    nn n n
n ii

i

V V V
V z L E z F z m L z

Z Z z
  (24)

where 1 0m is constant.
By (9), Assumption 1 and > 1, we can find constants 0i  and 0 1i  such that

 1
2( ) ( ( ))


 

   iii i
rr

i i jL z t z t d t C L
   (25)

and noting that for 1, , i n , by Lemma2,  n iV z is homogeneous of degree 2   ir  ,

2
2 , 







irn

i

V
m z

z
 

2 0m . (26)

Therefore
2 ( )

2 21
2 2 1(1 ) ( ( )) ,

 
  


    



i
iii

i
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i i j

i

V
m L z m z z t d t

z L

   



  (27)

where 2 2: m C , 2 1
2
 

i
r 


, 1

2


i
r


, and 2 (1 )
(1 ) 1

 
   


i

i i
ir

 
 


.

Substituting (27) into (24) yields
2 ( )

2 2 2
1 2 2 1

1 1 1
( ) (1 (1 ) ( )
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i ii i

i

rn n n
r r

n
i i i

V z L m z m L z m L z z t d
L

 
     


 (28)

By Lemma4, there exists a constant 3 0m such that
2 2 2

2 3( ) ( ) ,  
      i ir rm z z t d z m z t d     (29)

which yields
2 ( )

2 2 2
1 2 3 1

1 1 1
( ) (2 (1 )) ( )


 

   
  

 
        

 
   i

i i

i

rn n n

n
i i i

V z L m z m L z m L z t d
L

 
   


 , (30)

Construct a Lyapunov-Krasovskii functional as follows:
2( ( )) ( ( )) ( ) ,

  
t

n t d
V z t V z t z s ds  (31)
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  in
im L  follows from (29) and (30) that

  2 1
1 2 3 11(2 (1 ) ) ( ) .

 
       in

iV L m m m L z t
L





 (32)

Hence, by choosing a large enough L as  2 3 1max 1, (((2 (1 ) ) ))   L m m m  , where

 1min   i n i  and 2 ( )
1

1





 i
n

r

i

   .

Then, there exists a constant 2 0 , such that (30) becomes
2

2 1( ( )) ( ) 2 .  V z t z t   (33)

Moreover, ( )nV z and 2( ) 
t

t d
z s ds  are homogeneous of degree 2   and 2

with respect to  , respectively. Therefore, by Lemma2, there are positive constants 1 2,  ,

3 4and  , such that

2 2
1 2( ) ( ( )) ( ) 

  nz t V z t z t     , 2 2 2
3 4( ) ( ) ( )  

 
t

t d
z t z s ds z t     (34)

Therefore combining (33) and (34) yields
1

2 1( ( )) ( ( )) ,   V z t V z t  (35)

where  2 4 (2 ) 2       and     2 2 1
1 2 12 2    L L          .

From (35) it is not difficult to show that there is a finite time 0T , such that
1( ) 3 ,  V z t T (36)

from which it is clear that 1z can be rendered smaller than any positive tolerance with a
sufficiently large L .

4 Conclusion
In this paper, we have studied the practical output tracking problem for a class of uncertain
nonlinear time-delay systems under a homogeneous condition. First, we design a
homogeneous state feedback controllers have been constructed with adjustable scaling
gains. Then, with the help of a homogeneous Lyapunov-Krasovskii functional, we’ve
redesigned the homogeneous domination approach to tune the scaling gain for the overall
the closed loop systems. It is shown that an appropriate choice of gain will enable us to
globally track for a class of uncertain non-linear systems in finite time.
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